Calcium-sensing receptor activation induces intracellular calcium oscillations.

نویسندگان

  • G E Breitwieser
  • L Gama
چکیده

Parathyroid hormone secretion is exquisitely sensitive to small changes in serum Ca2+ concentration, and these responses are transduced via the Ca2+-sensing receptor (CaR). We utilized heterologous expression in HEK-293 cells to determine the effects of small, physiologically relevant perturbations in extracellular Ca2+ on CaR signaling via phosphatidylinositol-phospholipase C, using changes in fura 2 fluorescence to quantify intracellular Ca2+. Chronic exposure of CaR-transfected cells to Ca2+ in the range from 0.5 to 3 mM modulated the resting intracellular Ca2+ concentration and the subsequent cellular responses to acute extracellular Ca2+ perturbations but had no effect on thapsigargin-sensitive Ca2+ stores. Modest, physiologically relevant increases in extracellular Ca2+ concentration (0.5 mM increments) caused sustained (30-40 min) low-frequency oscillations of intracellular Ca2+ (approximately 45 s peak to peak interval). Oscillations were eliminated by 1 microM thapsigargin but were insensitive to protein kinase inhibitors (staurosporine, KN-93, or bisindolylmaleimide I). Staurosporine did increase the fraction of cells oscillating at a given extracellular Ca2+ concentration. Serum Ca2+ concentrations thus chronically regulate cells expressing CaR, and small perturbations in extracellular Ca2+ alter both resting intracellular Ca2+ as well as Ca2+ dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium Sensing Receptor Modulates Extracellular Calcium Entry and Proliferation via TRPC3/6 Channels in Cultured Human Mesangial Cells

Calcium-sensing receptor (CaSR) has been demonstrated to be present in several tissues and cells unrelated to systemic calcium homeostasis, where it regulates a series of diverse cellular functions. A previous study indicated that CaSR is expressed in mouse glomerular mesangial cells (MCs), and stimulation of CaSR induces cell proliferation. However, the signaling cascades initiated by CaSR act...

متن کامل

Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium.

Functional positive cooperative activation of the extracellular calcium ([Ca(2+)]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca(2+)]o or amino acids elicits intracellular Ca(2+) ([Ca(2+)]i) oscillations. Here, we report the central role of predicted Ca(2+)-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interacti...

متن کامل

Histamine elevates free intracellular calcium in mouse retinal dopaminergic cells via H1-receptors.

PURPOSE Previously, retinopetal axons containing histamine and dopaminergic neurons expressing histamine H(1)-receptor had been localized in mouse retinas using anatomic techniques. The goal of these experiments was to demonstrate that these receptors are functional. METHODS Dopaminergic cells were acutely isolated from retinas of transgenic mice expressing red fluorescent protein under contr...

متن کامل

Adenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes.

The activation of intracellular calcium release and calcium entry across the plasmalemma in response to intracellular application of inositol 2,4,5-trisphosphate and adenophostin A, two metabolically stable agonists for inositol 1,4,5-trisphosphate receptors, was investigated using Xenopus laevis oocytes and confocal imaging. Intracellular injection of inositol 2,4,5-trisphosphate induced a rap...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 280 6  شماره 

صفحات  -

تاریخ انتشار 2001